

Official telegram channel!

JOIN US:- Okeleme_2013
Okeleme_2013

M= 9V= "0.4 X10/-6 3 3 367 X106

mater Vg

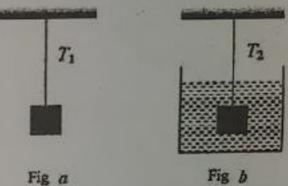
OF X36 FXW

13M

131

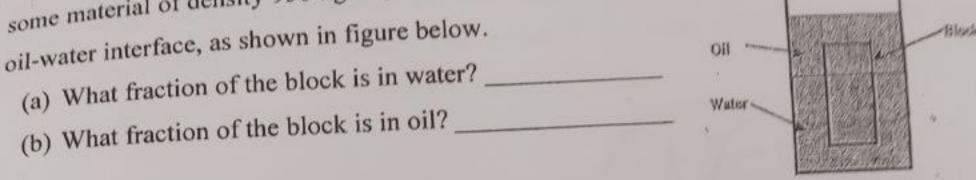
145H

0-68 N

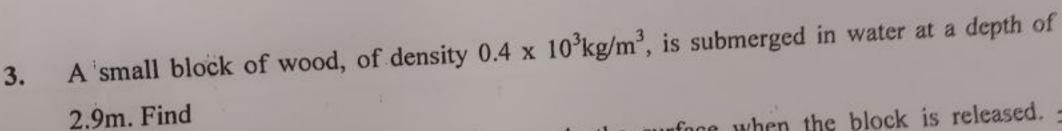

T1 -11/08

6. When a load of 500 kg	g is hanging from a ste	el wire of length 3 n	n and cross sections	al area 0.2
2 the wife sucton	of dejoine in the roller	on Barr. II the young	5 modulus for the	wire made
$v = 2 \times 10^{\circ}$	Pa, what is the chang	e in length of the wi	re beyond its no-lo	ad length?
of steel is 1 (A) 3.75 mm	(B) 2.75 mm	(C) 1.75 mm	(D) 0.75 mr	
7. What is Thermal expa	nsion?	27 3701		Y= F
A) The transfer of the	ermal energy between	naterials by the coll		ody
B) Is a decrease in a	materials size when ter	mperature decreases		Y = Flo
C) An increase in a n	naterials size when ten	perature increases		Ade
D) All			1	Y = Flo Adr Jez Flo YA
3. Which of the following	ng statements is false?		¥	
	eft in lengths of railwa			
B) Bimetallic strips	are used in thermost	ats, a thermostat b	eing a temperature	e- operated
switch				
C) As the temperatu	are of water is decrease	d from 4 °C to 0 °C	contraction occurs	
D) A change of tem	perature of 15 °C is eq	uivalent to a change	of temperature of 1	5 K
9. If the coefficient of	· -::-	he coefficient of sup	erficial expansion i	s B and the
9. If the coefficient of coefficient of coefficient	ubic expansion is	C, which of	the following	is false?
	D 4-D/2	C. B=3C/2	D.A CIS	
A. $C = 3A$ 10. The temperature of	land rises more quick	ly than that of the s	ea because the spe	eine near or
soil is			C) less than water	r
A) more tha	in water		6	
B) equal to	water		D) neutral	- NA
16.7 \$ 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1				*
	100 00 00	etre de e		

Part II. Give short answer /1.5pt each/


- 1. A layer of oil with density 800 kg/m³ floats on top of a volume of fresh water. A block of some material of density 950 kg/m³, a uniform cross-sectional area A and height h floats at oil-water interface, as shown in figure below.
 - (a) What fraction of the block is in water?
 - (b) What fraction of the block is in oil?
- Oil Block
 Water
- 2. An object is suspended by a cord as shown in figure 'a' and the tension in the cord is $T_1 = 10$ N. The object is then immersed to the water as shown in figure 'b'. In this case the tension in the cord is $T_2 = 6$ N.

Determine the density of the object.


- 3. A small block of wood, of density 0.4 x 10³kg/m³, is submerged in water at a depth of 2.9m. Find
 - (a) The acceleration of the block towards the surface when the block is released. -
 - (b) The time for the block to reach the surface.
- 4. If a pendulum clock keeps perfect time at the base of a mountain, will it also keep perfect time when it is moved to the top of the mountain? Explain.
- 5. A mass-spring system moving with simple harmonic motion has amplitude A. When the kinetic energy of the object equals twice the potential energy stored in the spring, what is the position x of the object?
- 6. If the spring having spring constant k is cut in to two equal parts, the spring constant of either half will be

Part II. Give short answer /1.5pt each/ A layer of oil with density 800 kg/m³ floats on top of a volume of fresh water. A block of some material of density 950 kg/m³, a uniform cross-sectional area A and height h floats at

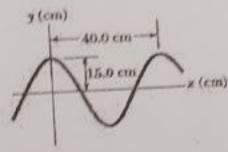
An object is suspended by a cord as shown in figure 'a' and the tension in the cord is $T_1 =$ 10 N. The object is then immersed to the water as shown in figure 'b'. In this case the 2. tension in the cord is $T_2 = 6 \text{ N}$.

Determine the density of the object. T_1 Fig b

(a) The acceleration of the block towards the surface when the block is released. =

Fig. a

- (b) The time for the block to reach the surface.
- If a pendulum clock keeps perfect time at the base of a mountain, will it also keep perfect time when it is moved to the top of the mountain? Explain.-


A mass-spring system moving with simple harmonic motion has amplitude A. When the kinetic energy of the object equals twice the potential energy stored in the spring, what is the position x of the object?

If the spring having spring constant k is cut in to two equal parts, the spring constant of either half will be-

() ()

7. The condition of resonance occurs when the driving frequency becomes equal to—
of the oscillator.

8. A sinusoidal wave traveling in the positive x-direction has a wavelength of 40cm, and a frequency of 8Hz. The vertical position of an element of the medium at t = 0 and x = 0 is also 15cm as shown in figure below. The period T & linear speed of the wave are and _______ respectively.

9. A car with a mass of 1300 kg is constructed so that its frame is supported by four springs. Each spring has a force constant of 20,000 N/m. Two people riding in the car have a combined mass of 160 kg. Find the frequency of vibration of the car after it is driven in the road and the car oscillates vertically.

10. Rubber has a negative average coefficient of linear expansion. What happens to the size of a piece of rubber as it is warmed?

100 100 100 100

Part III. Workout: Show all the necessary steps clearly for the following problems /15pt/

1. A horizontal pipe of 10 cm in diameter has a smooth reduction to a pipe of 5 cm in diameter. If the pressure of the water in the larger pipe is 80kPa and the pressure in the smaller is 60kPa, at what rate does the water flow through the smaller pipe? [4pts]

Som die 10cm =0.1m, dd = 5cm = 0.05m P12. 80 FPQ = 80×103 pa Pa 2 60KPa 2 60xis pa A1= nd12 = 0.00785 m2

t2= 17 d2 = 0.0019625m2

Using equation of Continuity

AIVI = AZVZ ZY O. 00785 VI = 0.0019625 VZ

ZS 12 = 441 - D

Applying Bernoulli's equation for hontontar pipe

P1+13841 = P2+138x2 -- (2)

80 kpa + 500 v12 = 60 kpa + 500 x 16 v1

= \\ \frac{200}{75} = 1.633mls in larger ripe V12 Jaox103

in the smarler 12 = 6.532 mis

D = 11X1 = 0.00785 X 1.63

6 | Page

2. In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression: $x(t) = 5\cos\left(2t + \frac{\pi}{6}\right)$

Where x is in meters and t is in seconds. find [4pts]

- (a) The position of the particle, at t = 0
- (b) Its time varying velocity
- (c) Its maximum acceleration
- (d) The period

Adama Science and Technology University School of Applied Natural Science Department of Applied Physics

General Physics Final-Exam for Regular Pre-engineering Students for 2020-2021 Ac. yr Time Allowed: 2:30hrs and Maximum Mark allotted: 45 %

Full Name	ID. No	Section:
	To a section of the s	

General Direction

- The exam has three parts: Multiple choice, short answer and work out problems.
- > Use of red pen, pencil & cell phone is not permitted in the exam hall.
- > Written manuscripts and printed materials are strictly prohibited in an exam hall.
- You are not allowed to use any extra paper; rather you can use the back page of each paper for your rough work.
- > Sharing calculator is strictly prohibited!

Use the following constants wherever applicable: -

density of water $(\rho_w) = 1000 \ kg/m^3$ specific heat of water $(c_w) = 4190 \ J/kg^0 C$ Earth's gravitational acceleration $g = 10m/s^2$ Atmospheric pressure $P = 1.01x10^5 pa$ Specific heat capacity $c_{Al} = 900 \ J/kg^0 C$ Linear thermal expansion of Al $(\propto_{Al} = 24x10^{-6}/^0 C)$ Density of aluminum $(\rho_{Al} = 2700kg/m^3)$

For Instructors use only!

Multiple choice/15pt/	Short answer/15pt/	Workout /15pt/	Total (45%)
sta fin an est wa			